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PRETEST-POSTTEST CORRELATION AND REGRESSION MODELS

Kim Onn Yap

Northwest Regional Educational Laboratory

INTRODUCTION

The accuracy with which regression models estimate treatment effects

is dependent upon a number of conditions. Of these conditions, the

stability of the regression line (a function of sample size and

correlatic- between pretest and posttest) is said to be the most

important (Tallmadge & Wood, 1976; Tallmadge & Horst, 1976; Horst,

Tallmadge & Wood, 1975).

Many writers (e.g., Horst, Tallmadge & Wood, 1975) have stated that

the utility of regression models is proportional to the size of the

correlation between pretest and posttest. As the size of the correlation

increases, the predicted posttest scores of the treatment group

decreases. This produces a corresponding increase in the difference

between predicted and observed scores. It is further stated (Tallmadge &

Horst, 1976) that in compensatory education projects, factors which lower

the correlation between pretest and posttest for low scoring students may

invalidate the results.

Thus, according to these writers, in using regression models one

should use a pretest which has a high correlation with the posttest. The

higher the correlation, the lower the magnitude of regression to the mean.

NWREL TAC
2/79'

3 3372A



On the other hand, it is also possible to argue that a high

pretest-posttest correlation is not important. Since selection is based

on the pretest, a high or low correlation should not affect our

confidence in the no-treatment expectation. A high or low correlation

merely reflects the goodness of the selection criteria. In the special

case when the pretest-posttest correlation is zero, the regression models

become equivalent to a control group design where students are randomly

selected for treatment and control groups.

While high correlations between pretest and posttest are recommended

by proponents of regression models, the size of such correlations of

course could not be pre-determined. In some cases (as when teacher

ratings or some composite measure is used as pretest and a standardized

test is used as posttest) the correlation can be expected to be low.

The objective of the present study was to examine the impact of the

correlation between pretest and posttest on the accuracy with which

regression models estimate treatment effects in Title I evaluation. More

specifically, the study was to provide an answer to the question: Does

correlation between pretest and posttest make a difference in estimting

treatment effects with regression models?

PROCEDURE

To study the impact of the size of pretest/posttest correlation on

the acc,..racy with which regression models estimate treatment effects,

data resembling those suited for analysis through these models were

simulated. The rudiments of the simulation were as follows:
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where --
Y117

Ylij = Xij + Eij (1)

Y2ij = Xij + Gij + TEij + E'ij, (2)

is the pretest score of student i in group j; Y2ij is the

posttest score of student i in group j; Xij is the true achievement level

of student i in group j at pretest; Gij is growth attributable to factors

other than the treatment for student i in group j; TEij is the treatment

effect for student i in group j; and Eij and E'ij are error terms.

For purposes of the simulation, it was assumed that the mean growth

rates (Gij's) for the treatment and control groups are equal. In

equation (2), TEij's were set to equal zero for students in the control

group to indicate the absence of treatment effects.

The values of Xij, Gij, TEij, Eij, and E'ij were made up of random

numbers provided by GAUSS (IBM, 1968), a computer subroutine which

generates normally distributed random numbers. The relative size of Xij,

Eij, and E'ij was adjusted by means of multipliers. For example, the

values of a set of Xij, Eij and E'ij may be obtained as follows:

Xij = .7 (N1)

Eij
.3 (N2)

E'ij = .3 (N4)

where the Ns are random numbers. Means and standard deviations for the

random numbers were chosen in such a way that Ylij and Y2ij would

have approximately a mean of 50 and a standard deviation of 21.06,

respectively, to correspond with the mean and standard deviation of

Normal Curve Equivalents (NCEs). For example, in

NWRIEL TAC 3
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both Nls

Ylij = Xij + Eij, where

Xij
.7

(N1) , and

Eij
.3

(1/2),

and N2s were given a mean of 50 and a standard deviation of

27.65. This gave Ylii a mean of 50 and a standard deviation of

V(.7)2
(27.65)2 + (.3)2 (27.65) 2

which simplifies to 21.06.

The same procedure was used to give Y2ij a mean of 50 and a

standard deviation of 21.06. Means and standard deviations for Gij and

TEij were determined by providing the appropriate parameter values to

subroutine GAUSS. Gij was set to have a mean of 10 and a standard

deviation of 10 and TEij was set to have a mean of 7 and a standard

deviation of 7. These means and standard deviations had been chosen to

reflect what is most likely to occur in real-life situations in terms of

NCE

Negative values provided by GAUSS, which occurred on few occasions,

were dropped, resulting in slightly higher means and lower standard

deviations for the variables.

The pretest data (f/ij) were first simulated. The hypothetical

cases in each data set were rank-ordered. A strict cut-off, located at

the 25th percentile point, was used to assign cases to the treatment

(j m 1) and control (j = 2) groups.

After the hypothetical cases had been assigned to Title I or control

groups, posttest data (f2ij) were simulated by means of equation (2),

adding growth (Gij) and treatment effects (TEij) to pretest scores of
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students in treatment groups and only growth (Gij) to pretest scores of

students in control groups.

Three critical parameters were manipulated in the simulation (see

Table 1). First, pretest reliability was varied from .84 to .69.

Second, the size of correlation between pretest and posttest was varied

from .75 to .50 and then to .25. Third, sample size was made to vary

from 100 to 200.

Table 1 about here

The manipulation of data reliability was based on Gulliksen's (1950)

idea that a reliability coefficient can be expressed as the ratio of true

variance to total variance. This means that we could vary reliability by

applying different multipliers to the random numbers which make up the

values of variables. For example, in

Ylij = Xij + Eij, where

Xij = .7 (N1),

Eij = .3 (N2),

and Nis and N2s are given the same variance, the reliability

coefficient of -lij is given by

rY1Y1 =
Var Xij

Var Xij + Var Eij

Since multiplying a set of numbers by a constant increases the

variance by the square of the constant and since Ni s and N2s have the

same variance, we have

rY1Y2 = (.7)2
(-7)2 + (-3)2

NWREL TAC
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That is, the reliability of Yiii is .84. It could readily be

verified that by changing the multipliers to .6 for Nis and .4 for

N2s we will have lowered data reliability to .69. In the simulation,

data sets with pretest reliability of .69 and .84 were created.

Correlations between Ylij and Y2ij were controlled by means of

the following formula:

Ram =

rII

Reported by Gulliksen (1950, p. 101), the formula gives the

correlation between a test and a criterion when each is increased to

infinite length to attain a reliability of unity. Given that

Ylij = Xij + Eij, and

Y2ij = Xij + Gij + E'ij,

the two variables share a common true score component in Xij, with Roo Dc,

reaching unity when both Ylij and Y2ij are made perfectly reliable.

(For simulation purposes, variance given to Gij was treated as error

variance.) It follows thaty/717711= rii, which provides a means

of obtaining a desired value for r11 by changing r11, rII, or both.

In the present simulation we had required that r11 (reliability of

Ylij) be either .84 or .69 (a fixed value), leaving rII (reliability

of Y2ij) to be varied to yield a desired value for r11. The way in

which a desired correlation, say .75, between Ylij and Y2ij was

obtained is illustrated as follows:

Since (a)

NWREL TAC 6
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(b) the desired value of r1I was .75 and (c) r11 had been given a

reliability of .84, we had

1.84 rII = .75

jr7i7. .75

;77r

= .82

rIl = .67

In other words, giving Yzij_,. a reliability of .67 produced a

correlation of .75 between Ylij and Y2ij.

Since the variance of Y2ij was made to equal 443.52 (the square of

21.06), the true variance required to yield a reliability coefficient of

.67 was (443.52))4(.67) which equals 297.16. An appropriate multiplier

(.62 in this case) was then applied to Xij in Y2ij (Xij had a standard

deviation of 27.65 when pretest reliability was .84) to produce the

required true variance.

To obtain correlation coefficients of .75, .50 and .25 between Ylij

and Y2ij, the reliability of Y2ij was varied from .67 to .07 for data

sets where pretest (Ylij) reliability was .84 and from .78 to .09 for

data sets where pretest reliability was .69. However, as indicated

earlier, variance due to Gij was treated as error variance. Thus, the

"reliability" coefficient for Y21J_,, was more a measure of the amount of

covariance between Ylij and Y2ij than the ratio between true and

total variance in Y2ij itself. When variance due to Gij was treated as

part of the true variance, the reliability of Y2ij was found to range

from .30 to .90 for data sets where pretest reliability was .84 and from

.32 to .99 for data sets where pretest reliability was .69.
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The correlations between Ylij and Y2ij were determined before

treatment effect (TEij) was added as a component to Y2ij for Title I

groups. Since TEij was given a population standard deviation of 7 (or a

variance of 49), the correlations between Ylii and Y2ij for Title I

groups would differ slightly from the correlations for the comparison

groups.

THE DATA SETS

Taking into account the different levels of each of the three

parameters (i.e., size of correlation between pretest and posttest, data

reliability, sample size), a total of 3 x 2 x 2 (or 12) categories of

data sets were simulated. One hundred data sets were created for each of

the categories. Characteristics of these data sets are summarized in

Appendices A to L.

An examination of the characteristics of these data sets suggests

that they closely resemble what we had intended to create. The obtained

values, in some instances, deviate slightly from the parameters. As

explained earlier, this came about essentially as a result of dropping

negative values provided by GAUSS on a few occasions. Except for the

slightly higher means and lower standard deviations, the data have the

appearance of NCE scores. (The higher means for Y2ij are due to higher

means for Xij and Gij.)
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ANALYSIS AND RESULTS

Data analysis procedures described by Tallmadge and Wood (1976, 1978)

for regression models were applied to the simulated data. Essentially,

the procedures require that a regression line be determined on the basis

of comparison group data to predict what the performance of Title I group

would have been--if they had not received Title I treatment. The

prediction is made at the point where the Title I group's pretest mean

intercepts the regression line. The predicted performance is then

subtracted from the actual performance of the Title I group, with the

remainder being the estimated treatment effect or gain.

In the simulation this estimated gain was again subtracted from the

actual gain (TEij) which was built into the posttest (f2ij) of the

Title I group. The difference was then interpreted as an index of the

accuracy with which regression models estimate treatment effects. The

means and standard deviations of such differences for each of the 12 data

categories are summarized in Table 2.

Table 2 about here

DISCUSSION

Before we examine the effects which the manipulated parameters (i.e.,

pretest-posttest correlation, pretest reliability, sample size) have on

the estimation of treatment effects it might be helpful to present a

perspective in which the results will be interpreted. As Wonnacott and

NWREL TAC 9
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bias, efficiency and consistency. An unbiased estimator is one

(1970) point out, an estimator may be described in terms of

that is'

Wonnacott

on the average, right on target. In other words, its expected value is

identical with the true value of the parameter. A biased estimator, on

the other
hand, has an expected value that is "off target" or deviates

from the true value of the parameter. An efficient estimator is an

unbiased estimator with a relatively small variance. An inefficient

estimator/ on the other hand, is an unbiased estimator with a relatively

large variance. A consistent estimator is one which zeroes in on the

true value of the parameter as sample size increases.

Viewed in this perspective, the results in Table 2 suggest that

regression models can be depended upon to provide relatively unbiased

estimates Of treatment effects. This is so because the mean differences

between

-

the estimated and actual gains were in general negligibly small.

Only in one case (Category V) did the mean difference exceed an absolute

value of 1.0- It is interesting to note that none of the parameters

being manipulated in the simulation appeared to have any appreciable or

systematic effects on the amount of bias in estimation.

}lowlier, with respect to efficiency we have a different Story. The

results Shoal that the size of correlation between pretest and Posttest

has a clearly discernible effect on the efficiency of the estima tes.

This is reflected in the increasingly larger standard deviations for the

mean differences as we move from a higher correlation to a lower

correlation. This pattern is seen across all 12 categories of data

sets. for the first three categories (where the pretest has a

reliability of .84) the standard deviation of the mean differences

10
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increases from 3.53 to 4.93 as the pretest-posttest correlation decreases

from .78 to .25. For the next three categories (where the pretest

reliability is lowered to .69) the increase in standard deviation is even

greater, rising from 4.47 to 6.18 as the pretest-posttest correlation

drops from .75 to .27. Similar patterns are seen in data sets in the

other categories.

Sample size also seems to have some effect on the distribution of the

mean differences or the efficiency of the estimates. This is evidenced

by the fact that standard deviations for data categories VII to XII

(where sample size is 200) generally are smaller than those for the first

six categories (where sample size is 100). The former standard

devil -ions range from 2.88 to 4.59, the latter from 3.53 to 6.18. It

would appear that a smaller sample size serves to further reduce the

efficiency of the estimates.

That regression models do not provide us with efficient estimates of

treatment effects is perhaps more dramatically shown by the ranges of the

mean differences obtained for the various data categories. These are

reported in Table 3. As one can hardly fail to be struck by the

magnitude of the ranges, one must remember that these are the extremes.

While they could occur and did occur in the simulation, the probability

of their occurring in any single evaluation is low. The standard

deviations of mean differences
discussed earlier remain a more stable

measure of the efficiency of the estimates.

NWREL
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As indicated earlier, an increase in sample size appears to enhance

the efficiency of the estimates. A larger sample size, however, does not

appear to produce a more consistent estimator--at least not in any

systematic way. It is true that in absolute value the sum of mean

differences obtained for data categories VII to XII (where sample size is

200) is less than that obtained for data categories I to VI (where sample

size is 100), the former being 1.75 and the latter 2.2. It is also true,

however, that in absolute value the mean differences for data categories

I and It are smaller than the mean differences for data categories VII

and VIII. This is also true with respect to data categories IV and VI

and da'a categories X and XII. It would appear that with regression

models a larger sample size does not necessarily result in an increase in

the consistency of estimates.

CONCLUDING REMARKS

In the simulation the author had set out to obtain evidence which

would support one of the two arguments concerning the importance of

having a high pretest-posttest correlation when regression models are

used to estimate treatment effects. Quite ironically, the evidence, as

it turned out, appeared to support both arguments in different ways. If

one used bias as the sole criterion to judge the adequacy of an

estimator, the evidence would suggest that the size of pretest-posttest

!z'AntreLation appears to have neither appreciable nor systematic effects on

the estimation of treatment effects. In general, regression models

provide estimates that are practically unbiased.

NWREL, TIC 12
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This does not mean, however, that pretest-posttest correlation makes

no difference whatsoever. For if one used efficiency as a criterion to

assess the adequacy of an estimator, the evidence would suggest that

pretest-posttest correlation has appreciable and systematic effects on

the estimation of treatment effects. The pattern of results clearly

indicates that the lower the correlation the less efficient the

estimates. In addition, sample size also appears to have some effect on

efficiency, with larger sample sizes tending to enhance the efficiency of

the estimates.

Therefore, in the case of .a single evaluation--which is typically the

case in a Title I districtthe effects of pretest-posttest correlation

on evaluation results can by no means be ignored. It would not be

difficult to see why upon a perusal of the ranges of mean differences

reported in Table 3 a Title I project administrator would seek a higher

pretest-posttest correlation or a different evaluation model to estimate

treatment effects.

Perhaps the most significant findings of the present study relate to

the overall adequacy of regression models when used to estimate Title I

treatment effects. In a typical situation, the pretest-

posttest correlation derived from Title I evaluation data would fall

within the range of those simulated in the present study (i.e., from .25

to .75). The results of the simulation suggest that within that range of

correlation coefficients, regression models provide relatively

inefficient--although relatively unbiased -- estimates of treatment

effects. The confidence intervals (as indicated by the standard

deviations of mean differences) are clearly too large to be sensitive to

NWREL TAC 13 2/79
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small achievement gains typically produced in Title I projects. It would

appear that the correlation coefficient of .40 recommended by Tallmadge

and Wood (1978, p. 77) as, by rule of thumb, being sufficiently high to

ensure reasonable accuracy of estimates of treatment effects, may, after

all, be too liberal. The results of the present study would suggest a

correlation coefficient of .75 or higher.

NWREL TAC 14 2/79
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Table 1

Parameters manipulated in the Simulation Study.

Parameter Level

Size of Pretest-Posttest
.75, .50, .25

Correlation

Pretest Reliability .84, .69

Sample Size
100, 200

patEr. TAC 118
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Table 2

Differences Between Actual and Estimated Gains by Data Set

Category and Size of Pretest-Posttest Correlation

Data Set
Category

Pretest-Posttest
Correlation

Estimated
Gain

Actual Difference

Gain Mean S.D.

I .78 8.82 8.89 .08 3.53

II .54 9.15 8.86 -.29 4.88

III .25 8.45 8.93 .48 4.93

IV .75 8.81 8.89 .09 4.47

V .53 9.91 8.86 -1.05 5.28

VI .27 9.14 8.93 -.21 6.18

VII .78 9.07 8.88 -.19 2.88

VIII .54 8.69 9.05 .36 3.83

IX .24 8.81 8.97 .16 4.78

X .75 9.06 8.88 -.18 2.69

XI .52 9.01 9.05 .04 4.07

XII .26 8.14 8.97 .82 4.59

NWREL TAC 17 19 2/79
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Table 3

Range of Differences Between Actual and Estimated Gains

by Data Set Category and Size of Pretest-Posttest Correlation

Data Set
Category

Pretest-Posttest
Correlation

Range of Differences
From To

I
.78 -7.51 8.02

II .54 -12.24 13.37

III .25 -8.63 14.86

IV .75 -9.38 9.33

V .53 -16,e9' 13.4f

VI .27 -13.48 12.37

VII .78 -6.95 6.53

VIII .54 -7.64 9.59

IX .24 -12.66 13.04

X .75 -6.63 6.46

XI .52 -10.87 8.69

XII .26 -12.46 13.62

7 .
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Footnotes for Appendices A-L

1. The notations in the Appendices are interpreted as follows:

rxx

rY1Y2

Yl

sYi

sY2

G

Sg

= pretest reliability

= correlation between pretest and posttest

= pretest mean

= pretest standard deviation

= posttest mean

= posttest standard deviation

= growth mean

= growth standard deviation

2. Each data category consists of 100 data sets. For categories I-VI,

each of the 100 data sets consists of 100 simulated cases. For

categories VII-XII, each of the 100 data sets consists of 200

simulated cases.

3. S.D. in the last column refers to standard deviations for the 100

simulated data sets.
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Appendix A

Characteristics of Data Sets in Category I

Characteristics Mean S.D.

rxx
.84

rY1Y2
.78 .04

Y1 52.33 1.73

SY1
19.38 1.19

55.76 1.75

Sy2 18.43 1.17

G 12.91 .83

Sg 7.91 ,55

NWREL TAC 19
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Appendix B

Characteristics of Data Sets in Category II

Characteristics Mean S.D.

rycc

rY3y2

.84

.54 .08

Yl 52.10 1.95

sn. 19.42 1.30

56.08 1.76

Sy2 17.89 1.17

G 12.86 .75

Sg 7.96 .57
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Appendix C

Characteristics of Data Sets in Category III

Characteristics Mean S.D.

rxx .84

rY1Y2
.25 .09

52.42 1.75

91'1
19.53 1.27

54.69 1.76

SY2
18.28 1.28

12.78 .89

Sg 7.83 .53

NWREL TPC 21
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Appendix D

Characteristics of Data Sets in Category IV

Characteristics Mean S.D.

r .69
=m

ryiy2 .75 .04

Y1
52.75 1.87

Sy1 19.13 1.35

T2 54.58 2.04

Sy2 18.86 1.47

G 12.82 .83

Sg 7.86 .52

NWREL TAC 22
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Appendix E

Characteristics of Data Sets in Category V

_____.....,.....,...-.-
-----,-...........+...../'-`-

Characteristics

--....-----/----

rxx

alY2

il

5Y1

Y2

Y2

6.

5g

Mean S.D.

.69

.53 .07

52.64 1.89

19.15 1.35

56.35 1.78

17.91 1.04

12.87 .85

7.92 .56



Appendix F

Characteristics of Data Sets in Category VI

Characteristics Mean S.D.

rxx .69

ry1y2
.27 .10

52.49 1.80

Sy1
19.21 1.19

55.30 2.08

SY2
18.77 1.16

12.79 .68

Sg
7.84 .57

MEL TAC 24 2/79
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Appendix G

Characteristics of Data Sets in Cat or VII

Characteristics Mean S.D.

rxx .84
.

rY1Y2
.78 .03

52.16 1.35

SY1
19.35 91

55.52 1.27

sY2
18.59 .93

G 12.92 .60

99
7.91 .37
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Appendix H

Characteristics of Data Sets in Category VIII

Characteristics Me 11 S.D.

rxx .84

ryly2 .54 .05

51.86 1.30

Sy]. 19.29 .98

56.42 1.40

Sy2 18.19 .84

12.96 .56

S9
7.94 .39

NWREL TAC 26 2/79
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Appendix I

Characteristics of Data Sets in Category IX

Characteristics Mean S.D.

rXX
.84

rY1Y2
.24 .07

52.04 1.40

Sy1
19.23 1.01

54.96 1.14

gY2
18.57 .92

13.00 .51

S9
7.95 .35

NWREL TAC 27

30
2/79

3372A



Appendix J

Characteristics of Data Sets in Category X

Characteristics Mean S.D.

rxx
.69

rY1Y2
.75 .03

ii 52.61 1.25

Sy1
19.20 .83

Y2 54.52 1.42

sY2
18.89 .78

G 12.92 .55

Sg 7.94 .39

NV1REL TAC 28

3I

2/79

3372A



Appendix K

Characteristics of Data Sets in Category XI

Characteristics Mean S.D.

r xx .69
eN11

rY1Y2
.52 .05

52.54 1.27

gY1
19.09 .87

56.21 1.24

Sy2 18.04 .87

13.03 .47

Sg 7.98 .34

MIRE, TAC 29 2/79

3372A
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Appendix L

Characteristics of Data Sets in Category XII

Characteristics Mean S.D.

rxx .69
m

rYiy2 .26 .07

52.67 1.41

$Y1
19.07 .96

55.25 1.12

SY2
18.67 .91

12.84 .59

S9
7.93 .41

NWREL TPC

33
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